Instruction Issue: (指令發送)它是第一個CPU管道,用於接收記憶體送到的指令,並把它發到執行單元。IPC(Instructions Per Clock Cycle,指令/時鐘週期)表示在一個時鐘週期用可以完成的指令數目。
KNI: (Katmai New Instructions,Katmai新指令集,即SSE) Latency(潛伏期)從字面上瞭解其含義是比較困難的,實際上,它表示完全執行一個指令所需的時鐘週期,潛伏期越少越好。嚴格來說,潛伏期包括一個指令從接收到發送的全程序。現今的大多數x86指令都需要約5個時鐘週期,但這些週期之中有部分是與其它指令交迭在一鸕模ú⑿寫p恚G紹制PPU製造商宣傳的潛伏期要比實際的時間長。
LDT: (Lightning Data Transport,閃電資料傳輸總線)K8採用的新型資料總線,外頻在200MHz以上。
突發資料傳輸率(Burst data transfer rate):指的是電腦通過資料總線從硬碟內部緩衝區中所讀取資料的最高速率。也叫外部資料傳輸率(External data transfer rate)。目前採用UDMA/66技術的硬碟的外部傳輸率已經達到了66.6MB/s。D
最大內部資料傳輸率(Internal data transfer rate): 指磁頭至硬碟緩衝間的最大資料傳輸率,一般取決於硬碟的碟片轉速和碟片資料線密度(指同一磁道上的資料間隔度)。也叫持續資料傳輸率(sustained transfer rate)。一般採用UDMA/66技術的硬碟的內部傳輸率也不過25-30MB/s,只有極少數產品超過30MB/s,由於內部資料傳輸率才是系統真正的瓶頸,因此大家在購買時要分清這兩個概念。不過一般來講,硬碟的轉速相同時,單碟容量大的內部傳輸率高;在單碟容量相同時,轉速高的硬碟的內部傳輸率高。
自動檢測分析及報告技術(Self-Monitoring Analysis and Report Technology,簡稱S.M.A.R.T): 現在出廠的硬碟基本上都支持S.M.A.R.T技術。這種技術可以對硬碟的磁頭單元、碟片電機驅動系統、硬碟內部電路以及碟片表面媒介材料等進行監測,當S.M.A.R.T監測並分析出硬碟可能出現問題時會及時向用戶報警以避免電腦資料受到損失。S.M.A.R.T技術必須在主機板支持的前提下才能發生作用,而且S.M.A.R.T技術也不能保證能預報出所有可能發生的硬碟故障。
部分回應完全匹配技術PRML(Partial Response Maximum Likelihood):能使碟片存儲更多的信息,同時可以有效地提高資料的讀取和資料傳輸率。是當前套用於硬碟資料讀取通道中的先進技術之一。PRML技術是將硬碟資料讀取電路分成兩段「操作流水線」,流水線第一段將磁頭讀取的信號進行數字化處理然後只選取部分「標準」信號移交第二段繼續處理,第二段將所接收的信號與PRML晶片預置信號模型進行對比,然後選取差異最小的信號進行組合後輸出以完成資料的讀取程序。PRML技術可以降低硬碟讀取資料的錯誤率,因此可以進一步提高磁牒資料密集度。
PRML(局部回應最大擬然,Partial Response Maximum Likelihood):除了磁頭技術的日新月異之外,磁記錄技術也是影響硬碟性能非常關鍵的一個因素。當磁記錄密度達到某一程度後,兩個信號之間相互干擾的現象就會非常嚴重。為了解決這一問題,人們在硬碟的設計中加入了PRML技術。PRML讀取通道方式可以簡單地分成兩個部分。首先是將磁頭從碟片上所讀取的信號加以數字化,並將未達到標準的信號加以捨棄,而沒有將信號輸出。這個部分便稱為局部回應。最大擬然部分則是拿數字化後的信號模型與PRML晶片本身的信號模型庫加以對比,找出最接近、失真度最小的信號模型,再將這些信號重新組合而直接輸出資料。使用PRML方式,不需要像脈衝檢測方式那樣高的信號強度,也可以避開因為信號記錄太密集而產生的相互干擾的現象。 磁頭技術的進步,再加上目前記錄材料技術和處理技術的發展,將使硬碟的存儲密度提升到每平方英吋10GB以上,這將意味著可以實現40GB或者更大的硬碟容量。
全程訪問時間(max full seek):指磁頭開始移動直到最後找到所需要的資料塊所用的全部時間,服務機構為毫秒(ms)。
外部資料傳輸率:通稱突發資料傳輸率(burst data transfer rate):指從硬碟緩衝區讀取資料的速率,常以資料接頭速率替代,服務機構為MB/S。目前主流硬碟普通採用的是Ultra ATA/66,它的最大外部資料率即為66.7MB/s,2000年推出的Ultra ATA/100,理論上最大外部資料率為100MB/s,但由於內部資料傳輸率的制約往往達不到這麼高。
ST-506/412接頭:這是希捷開發的一種硬碟接頭,首先使用這種接頭的硬碟為希捷的ST-506及ST-412。ST-506接頭使用起來相當簡便,它不需要任何特殊的電纜及接頭,但是它支持的傳輸速度很低,因此到了1987年左右這種接頭就基本上被淘汰了,採用該接頭的老硬碟容量多數都低於200MB。早期IBM PC/XT和PC/AT機器使用的硬碟就是ST-506/412硬碟或稱MFM硬碟-MFM(Modified Frequency Modulation)是指一種編碼方案。
ESDI接頭:即(Enhanced Small Drive Interface)接頭,它是邁拓公司於1983年開發的。其特點是將編解碼器放在硬碟本身之中,而不是在控制卡上,理論傳輸速度是前面所述的ST-506的2…4倍,一般可達到10Mbps。但其成本較高,與後來產生的IDE接頭相比無優勢可言,因此在九十年代後就被淘汰了。
PCMCIA (Personal Computer Memory Card International Association):是一種標準的卡片型擴充接頭,多半用於筆記型電腦上或是其它外圍產品,其種類可以分為:
Type 1:3.3mm的厚度,常作成SRAM、Flash RAM 的記憶卡以及最近列印機所使用的DRAM記憶卡。
Type 2:5.5mm的厚度,通常設計為筆記電腦所使用的調製解調器接頭(Modem)。
Type 3:10.5mm的厚度,被運用為連接硬碟的ATA接頭。
Type 4:小型的PCMCIA卡,大部用於數位相機。
名稱 含義 亮燈狀態
TD Transmit Data 正在送傳資料
RD Receive Data 正在接收資料
DTR Data Terminal Ready 電腦執行通訊應用程式
CTS Clear To Send 準備傳磅資料
DCD Data Carrier Detect 偵測到載波訊號表示有資料傳送或接收
OH Off-Hook 電話線路正在使用中
AA Automatic Answer 有人呼叫時自動接收
PWR Power Ready 電源接通
(六):音效卡術語
六、音效卡術語解釋
DSP:即Digital Signal Processing (數字信號處理)。DSP技術在音調控制、失真效果器、Wah-wah踏板等模擬電子領域有廣泛的套用。同時,DSP在模擬均衡和混響等多種效果上也能大顯身手 。通過電腦CPU或專門的DSP晶片都可以進行DSP 動作,不同的是,專門的DSP晶片處理要比電腦CPU處理更最佳化,速度更快 。
采樣:把模擬音瀕轉成數字音瀕的程序,就稱作采樣,所用到的主要設備便是模擬/數字轉換器(Analog to Digital Converter,即ADC,與之對應的是數/模轉換器,即DAC)。采樣的程序實際上是將通常的模擬音瀕信號的電信號轉換成二進制碼0和1,這些0和1便構成了數字音瀕文件。采樣的頻率越大則音質越有保證。由於采樣頻率一定要高於錄製的最高頻率的兩倍才不會產生失真,而人類的聽力範圍是20Hz∼20KHz,所以采樣頻率至少得是20k×2=40KHz,才能保證不產生低頻失真,這也是CD音質採用44.1KHz(稍高於40kHz是為了留有餘地)的原因。
Direct Sound 3D:源自於Microsoft DirectX的老牌音瀕API。它的作用在於說明 開發者定義聲音在3D空間中的定位和聲響,然後把它交給DS3D相容的音效卡,讓它們用各種算法去實現。定位聲音的效果實際上取決於音效卡所採用的算法。對不能支持DS3D的音效卡,它的作用是一個需要佔用CPU的三維音效HRTF算法,使這些早期產品擁有處理三維音效的能力。但是從實際效果和執行效率看都不能令人滿意。所以,此後推出的音效卡都擁有了一個所謂的「硬體支持DS3D」能力。DS3D在這類音效卡上就成為了API接頭,其實際聽覺效果則要看音效卡自身採用的HRTF算法能力的強弱。